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EXECUTIVE SUMMARY 

As the price of integrated sensor and computing packages drops, the availability of robotic technologies is quickly increasing. 
The challenges of developing robotic technologies today is rapidly diversifying to developing behaviors and sensors to make 
robots more compatible with humans.  Our expressive mobile robot based off the robot from the Disney-Pixar movie of the 
same name, WALL-E, was designed with the goal of demonstrating more natural forms of communication through the form 
of gesture control. This makes communication more intuitive without putting the burden on the human to learn specific 
commands through traditional elements like a joystick, keyboard, or a mouse. 

The Microsoft Kinect was initially developed as a game controller for the Xbox360. It’s unique in that it has two cameras 
onboard and provides a color (RGB) and a depth image (produced by infrared lasers and structured light techniques), and 
uses the two to construct estimations of human torsos and is available for less than $100. The Kinect has a slew of powerful 
algorithms behind it; many of them use the depth image and estimate where specific body parts and then extrapolates joint 
positions based off of that to read the skeletal images.  This allowed us to use the black box provided to give us the desired 
outputs, namely that of hand tracking.  

Ultimately we were able to develop a fully integrated mobile robot system that greets you and performs a simple following 
behavior.  By tracking your hand position, WALL-E is able to follow you around a hallway, as it tries to center its field of view 
around where your hand is located in the image stream. By doing so, we developed a foundation for future projects to take 
advantage of the recognition capabilities in the Kinect, and future interactive platforms that would use ROS, C++, Python, and 
Arduinos/hardware serial devices.  

 

BACKGROUND 

In order for robots to become more integrated into our daily lives, we must be able to have more natural interactions with 
them.  More natural forms of communication involve both explicit and implicit communication.  Explicit communication is 
limited to specific environments, and implicit communication can add clairty, contextual input, and efficiency.  If robots were 
able to partner with humans as effectively as dogs do with their handlers, the social and technical roadblocks to having 
human-robot teaming and collaboration would be hugely reduced.   

We all have a predisposition towards nonverbal cues, as we can easily intuit others emotional states through discussions and 
personal interactions.  Gestures also replace speech when we cannot or do not want to verbalize our thoughts and help 
regulate the back-and-forth flow of speech in a conversation.  Robots will need to be able to interact with a lay audience 
which will not necessarily be used to interacting with a robot through a computer and a screen, but are generally more 
familiar with cues such as pointing in a specific direction or waving.  

Early on it was determined that an interaction sequence would best be accomplished by building an autonomous robot based 
upon the Disney-Pixar movie by the same name, WALL-E.  This specific robot was picked because it communicates primarily 
through nonverbal interaction with humans and other robots; therefore it has the necessary expressive capabilities to 
communicate emotional cues to a human teammate.  Additionally, it is a non-threatening, friendly platform with which the 
younger generation can identify, which makes it well-suited for interacting with test subjects.  As WALL-E already has a set of 
expressions and implicit expectations in its interactions, it lends itself well to the predictive aspect necessary to successfully 
interact with humans. 

 

 



THE MICROSOFT KINECT 

It is becoming increasingly important to integrate various technologies and knowledge across multiple fields in order to 
develop better technical solutions.  Advances in consumer electronics have resulted in smaller hardware components that 
are becoming more affordable and portable every year, and much research has benefitted from the $100 RGB-D camera 
system developed for the Microsoft XBox 360, the Kinect.  The software utilized in detecting human-like figures has become 
even more advanced with better machine learning algorithms and filters, resulting in facial feature tracking, gesture tracking, 
and 3D mapping of indoor spaces.  It is now possible to quantitatively measure human body language, as other researchers 
have done to construct things like interpersonal trust in social interactions. 

Thanks to the large team of computer scientists and vision experts that Microsoft assembled to develop the software 
necessary to use the RGB-D data to do useful computer vision, as well as a large team of hackers/developers from the 
manufacturer of the original Kinect, the device has a lot of easily-accessible libraries.  Many of these libraries were developed 
with machine learning principles where they took data of body movements from a large sampling of individuals and trained 
their algorithms (using deep randomized decision forest classifiers).  These libraries allow for the use of directly accessing 
specific outputs like skeletal joint positions of a person or detection and tracking of multiple people in a room.  The way that 
the Kinect detects objects is through structured light; the principle of looking at a known laser beam diffraction pattern and 
observing the offsets between the dots, particularly when placed at different distances.  This is exemplified in figures 1 and 2.  

Figure 1.   Figure 2.  

Figure 1. How the Kinect determines the distance from itself to an object in the field of view.  The Kinect looks at the reflection pattern from the laser on 
the Kinect and uses triangulation techniques and diffraction to determine where an object is.  (Image from  J. Han’s paper, “Enhanced Computer Vision 
with Microsoft Kinect Sensor: A Review.”) 

Figure 2. Another perspective of how the depth camera calculates its images based on the laser reflection off the surface as seen by the camera.  (Image 
from http://media.tumblr.com/tumblr_mba6oaKIyb1r4nbic.png) 

 

 

INTEGRATION WITH THE KINECT AND NITE 

We decided to take advantage of the somewhat open-source toolkit developed for the Microsoft Kinect.  (It’s somewhat 
open-source because although you can download and manipulate the code, most of the documentation was pulled off the 
internet once Apple bought the company, OpenNI, that was behind its development.)  A lot of the computational analysis 

http://media.tumblr.com/tumblr_mba6oaKIyb1r4nbic.png


from the Kinect has been abstracted and contained inside the OpenNI and NiTE APIs. While it would certainly be feasible to 
write our own code using contour detection in OpenCV and simulate binocular vision using two regular webcams, 
piggybacking off of what OpenNI and NiTE has already accomplished allows us to focus on the higher level responses to 
human interaction. 

The main code that interacts with the Kinect is the “detectfinger” node, which tracks a user’s hand after completion of the 
activation gesture, which is a dramatic push using one hand towards the camera. After the user has done the gesture, the 
detectfinger node will constantly return the X,Y,Z position of the hand that it is tracking. We then use this stream of 
information to choose WALL-E’s correct response depending on the location of the tracked hand. The detectfinger node also 
outputs basic gesture information, such as detecting when a session has begun/ended, or when a person has waved. We pass 
this gesture information on to our python nodes as well, encoded as a custom message type with Boolean variables. A visual 
representation of this aspect of the code (also known as the “forebrain” in the Olin robot brain architecture) is shown below. 

 

Figure 3. This is a high-level overview of our software flow and shows what we’re passing in from the time we take an image with the Kinect to after the 
image is processed by the NiTE toolkit and outputs the values we want (hand position and gesture Boolean information). 

 

INTEGRATION WITH ROBOT 

We take a 3 step approach to translating human movement into something WALL-E can interpret. At the highest level, we use 
OpenNI and NiTE to find the user’s hand and track its movements. As explained in the previous section, the “detectfinger” 
script allows very easy translation of human movement into data points that we can analyze. This “detectfinger” node 
publishes the XYZ positions of the hand that two different python nodes listen to. The “move.py” is in charge of sending 
motor commands to the WALL-E’s drive-train, while “emotion.py” is in charge moving the servos in the eyes and arms. By 
analyzing the information from detectfinger, move.py and emotion.py send the desired motor commands and servo positions 
to the Arduino microcontroller. 

WALL-E has an ultrasonic sensor mounted between his eyes which gives us distance information. While we could technically 
extract distance from the RGB-D images from the Kinect, the ultrasonic sensor is directly connected into the Arduinos that 
control the servos on WALL-E, which allows for a more reliable transmission of distance data and stopping when WALL-E has 
gotten too close to the user, particularly when a human is closer than the minimum required distance for the Kinect (which is 
approximately 4 feet). This distance data is also transmitted as a ROS node of its own, which emotion.py listens to and 
generates the correct responses based on WALL’E’s distance from the user (i.e. say whoa when you’re too close). 

WALL-E has two Arduino strapped to his back. The first controls the drive train, while the second controls the servos in his 
eyes and arms. These Arduinos are connected to the ROS network on our computers through rosserial which constantly 
listens for new messages being posted to their node. The Arduinos have separate state machines, and switch states based on 
what the incoming message demands. Passing state machine values allow us to communicate quickly across rosserial, which 
is ideal for a hindbrain layer that runs independently of the whole system. Our full software diagram can be seen in figure 4. 



 

Figure 4. This is a high-level overview of our software flow. In terms of robotic software development, the robot only has two brains: a hindbrain and a 
forebrain. The forebrain takes in the images and figures out what to do with the given coordinates and Boolean values from the NiTE toolkit, and then 
commands specific states to the hindbrain which consists of Rosserial nodes running on the arduinos to control the hardware. Because there is no 
intermediate filtering or behavior arbiter, there is currently no midbrain on this robot. 

  

CONCLUSION 

We have demonstrated that it is feasible to interface with the Microsoft Kinect through OpenNI and integrate it with an 
expressive mobile robot to create convincing interaction sequences. WALL-E, as a mobile platform built completely in ROS, 
successfully demonstrates integration with high-level vision algorithms and multiple computing devices. This system uses the 
fairly black boxed Kinect API and is able to transmit information through ROS.   Via the gesture recognition abilities of OpenNI 
and NiTE, WALL-E is capable of responding to easily recognizable gestures such as “pushing motions”, or clicks, or simple 
waves.  We’ve written CMakeFiles that can serve as a foundation for future projects that also want to take advantage of the 
the RGB-D images that the Kinect can produce. Overall we’ve created a fairly believable, interactive character that is mobile 
and accurately responds to simple waves and can follow us down a hallway. 

 

FUTURE WORK 

In the span of 4 weeks, we weren’t able to fully exploit the the capabilities of OpenNI and NiTE. Given the NiTE 
documentation, we could see that were several modules we left completely untouched during this project. Abilities like scene 
analysis for the number people, or for push/pull gesture recognition opens up entirely new avenues for robotic responses.  
Combinations of these modules could be used in future iterations to greatly increase the range of gestures WALL-E could 
respond to and help the robot become better at understanding more natural forms of communication.  Additionally, all 
processing is currently done on a laptop that WALL-E must carry around. A future version could take advantage of the size 
and power of modern embedded computers. Although this would require additional research into interfacing with an 
operating system that isn’t as easy to use as a full desktop version of Ubuntu, the use of an embedded computer would 
greatly increase WALL-E’s mobility. 
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