A WEE PORTFOLIO
  • Home
  • About Me
  • Post-Olin ('15-Present)
    • Argo AI
    • Carnegie Robotics, LLC (CRL)
    • WPI MS in RoboE >
      • Capstone
      • Robot Dynamics
      • Robot Controls
      • Concepts of SysE
      • Software System Design
      • Ethics
      • ETR 500: Travelers
    • Helping further STEM Education
    • Traveling through Southeast Asia
    • Ocean Alliance: Conservation Tech for Whales
  • Olin
    • WALL-E
    • Senior Year ('13-14) >
      • NREIP Internship at SSC Pacific Unmanned Systems Group
      • A Tetris-Playing Robot Arm
      • Senior Capstone Program in Engineering (SCOPE)
      • Controls
      • Design for Manufacture
      • Research at Olin Summer 2014
      • Computational Robotics
      • Jazz Theory
      • My Experience as a PoE Ninja
    • Junior Year ('12-13) >
      • C-2 Innovations, Inc (C-2i)
      • SnotBot
      • Mechanical Design
      • Archaeology (ANTH 60A)
      • Principles of Engineering
      • Robo 2
      • Making Food From Scratch: A Passionate Pursuit
    • Sophomore Year ('11-12) >
      • My semester at USC
      • SailBot
      • Voith-Schneider Propeller (VSP)
    • Freshman Year ('10-11) >
      • Modeling and Simulation
      • Design Nature
      • Materials Science
      • Real World Measurements
      • FBE
  • Publications
  • Art

Robot Controls
Spring 2016

Premise

Our goal was to develop a back-mounted camera stabilization platform for use on rugged terrain, specifically for park rangers who might be interested in documenting trail condition, though it could also be used for independent film crews.

Controller   desired

Needed a controller to compensate for the high-frequency disturbances induced from waking and the low-frequency motion from walking up and down.

Approach

  • Developed CAD model
  • Developed Inverse Kinematics model
  • Generated sinusoidal walking input with noise as sensor error (5cm amplitude with a frequency of 10 radians/second)
  • Developed low frequency and high frequency controllers
  • Optimized model for realistic torque outputs

Conclusion

  • Controller compensates for disturbances from gait pattern
  • Current motors not sufficient for all scenarios
  • Low-pass filters do not always work for sensors​

Future Work
  • Applying a bayseian model and a predictive controller to adapt to more than just flat terrain

Picture
Proposed design/mounting strategy for such a system
Our project was somewhat inspired by this video.
Powered by Create your own unique website with customizable templates.
  • Home
  • About Me
  • Post-Olin ('15-Present)
    • Argo AI
    • Carnegie Robotics, LLC (CRL)
    • WPI MS in RoboE >
      • Capstone
      • Robot Dynamics
      • Robot Controls
      • Concepts of SysE
      • Software System Design
      • Ethics
      • ETR 500: Travelers
    • Helping further STEM Education
    • Traveling through Southeast Asia
    • Ocean Alliance: Conservation Tech for Whales
  • Olin
    • WALL-E
    • Senior Year ('13-14) >
      • NREIP Internship at SSC Pacific Unmanned Systems Group
      • A Tetris-Playing Robot Arm
      • Senior Capstone Program in Engineering (SCOPE)
      • Controls
      • Design for Manufacture
      • Research at Olin Summer 2014
      • Computational Robotics
      • Jazz Theory
      • My Experience as a PoE Ninja
    • Junior Year ('12-13) >
      • C-2 Innovations, Inc (C-2i)
      • SnotBot
      • Mechanical Design
      • Archaeology (ANTH 60A)
      • Principles of Engineering
      • Robo 2
      • Making Food From Scratch: A Passionate Pursuit
    • Sophomore Year ('11-12) >
      • My semester at USC
      • SailBot
      • Voith-Schneider Propeller (VSP)
    • Freshman Year ('10-11) >
      • Modeling and Simulation
      • Design Nature
      • Materials Science
      • Real World Measurements
      • FBE
  • Publications
  • Art